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1 Simulation setup

For our simulation experiments, we simulated ancestral recombination graphs from the coalescent with
recombination process using the CoaSim tool [1]. From this we extracted local (tree) genealogies and
simulated sequences over these using the Bio++ suite [2] with the Jukes-Cantor JC69 substitution model.

To validate the model, we simulated sequence data from the coalescence with recombination process
and used the isolation-with-migration CoalHMM to infer the parameters. Based on experiments done
with the isolation CoalHMM from Mailund et al. [3] we didn’t expect to be able to infer C1 and C2 so
we simulated data with C1 = C2 = Ca (but see Section 4).

To keep the number of parameters to explore down, we produced simulated data with symmetric
migration rates M12 = M21 (but see Section 5).

2 Model likelihood

We first simulated coalescence times and sequences from the coalescence with recombination and plotted
the CoalHMM likelihoods. To keep the complexity of looking at likelihoods of the model to a minimum
we only allowed one or two parameters to vary, keeping the other parameters at their simulated value.
We plotted likelihood curves for single parameters (see Figure 1) and for all pairs of parameters (see
Figure 2).

In general, we find that the maximum likelihood is close to the simulated values. However, we do see
some linearity in some of the pairs of parameters, mainly M and τ1 and C and τ2, that could potentially
complicate maximizing the likelihood for all parameters simultaneously. It is not immediately obvious
how to re-parameterize the model to avoid this linearity, so we did not explore this further.

3 Parameter estimation

The main goal of our model is to estimate parameters of the isolation-migration model, so this was the
focus of our experiments.

We first generated 10 independent 1Mbp segments and analyzed them jointly. For all simulations we
used a coalescence rate of C = 2, 500 – corresponding to an effective population size ofNe = 10, 000 assum-
ing a substitution rate of µ = 10−9 substitution per year and 20 years per generation – and a recombination
rate of R = 0.4 – corresponding to 0.8 cM/Mb with the assumed mutation rate and generation time. We
simulated 10 independent data sets for each combination of parameters τ1 ∈ {0.00025, 0.00050} (250 and
500 thousand years ago), τ2 ∈ {0.001, 0.002} (1 and 2 million years ago), and M ∈ {62.5, 125.0, 250.0}.

For maximum likelihood parameter estimation, we used the numerical optimization functionality from
the scipy optimize module and HMMLib [4] to compute the likelihood for the hidden Markov model.

3.1 Number of HMM states

While not exactly a model parameter, the number of states to use in the hidden Markov model, given by
the number of time intervals used, is a model choice. To test the effect of this, we estimated parameters
with 5, 10, 15, and 20 time intervals in the gene-flow period (from τ1 to τ2) and in the ancestral population
(above τ2).

Figure 3 shows the estimation accuracy of the coalescence rate. For all configurations, the parameter
seems to be well recovered. Figure 4 show the estimation accuracy of the recombination rate. For
all configurations, this rate is under-estimated. This is consistent with the bias in recombination rate
estimates in the isolation-model CoalHMM [3].
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Figure 1. Likelihood curves for individual parameters. Each sub-figure shows the likelihood for
a single parameter, where all other parameters are kept at their simulated value. Each parameter
likelihood is shown for two different simulated datasets. The true value is shown in the middle of the
plot as a vertical red line.
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Figure 2. Likelihood curves for pairs of parameters. Each sub-figure shows the likelihood
surface for pair parameters, where all other parameters are kept at their simulated value. Each
likelihood is shown for two different simulated datasets. The true values are shown in the center of the
plot as a circle.
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Figure 3. Coalescence rate estimates. Box-plots showing the accuracy of estimated coalescence
rates as a function of the number of time intervals used in the CoalHMM. Each box-plot contains
results for all combination of parameters. The horizontal red line indicates the true simulated value.

Figure 5 shows the estimation accuracy of the time where gene-flow stops completely (τ1 on the left)
and when the ancestral population split in two (τ2 on the right). The latter is generally well recovered,
while the former is recovered but with a larger uncertainty and possibly a slight up-wards bias.

Figure 6 shows the estimation accuracy of the migration rate. The median estimate seems to recover
the true value, with a possible slight over-estimation bias, but the distribution of estimates has a very
wide right-tail, see Figure 7.

For most parameter estimates, the number of HMM states does not seem to have a large impact on
the estimation accuracy, but the variance in estimates of migration rates is large for 5 time intervals and
is reduced when the number of states is increased. It is acceptable with 10 time intervals, however, and
since the HMM algorithms are quadratic in the number of states, we use 10 time intervals in all analyses
unless otherwise stated.

3.2 Estimation accuracy as a function of simulated parameters

We would expect the estimation accuracy of migration rates and split times to depend on the true
values of these; if the interval where migration is short, and the migration rate low, we expect very few
coalescence events in this interval to make inference from, and if this interval is recent, we will have
very few mutations in the alignment to infer the coalescence time from. We explored this by plotting
estimated parameters for each combination of τ1, τ2 and M separately.

Figure 8 shows estimates of τ1 and τ2 for all combinations of simulated values. We see that τ2 is less
sensitive to the simulated values, although with a larger uncertainty in estimated values for the shortest
migration interval. For τ1 we see a large variance for the two shortest migration intervals, and an over-
estimation for the smallest migration rate in the migration interval [τ1 = 0.00025, τ2 = 0.001]. This is
perhaps not surprising considering that we expect to have very few coalescence events very recently in
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Figure 4. Recombination rate estimates. Box-plots showing the accuracy of estimated
recombination rates as a function of the number of time intervals used in the CoalHMM. Each box-plot
contains results for all combination of parameters. The horizontal red line indicates the true simulated
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Figure 5. Split time estimates. Box-plots showing the accuracy of estimated split time as a
function of the true split times and the number of time intervals used in the CoalHMM. Plots on the
left shows the estimates of the time when gene-flow subsides (τ1) while plots on the right shows the
estimates of the time when the ancestral population split in two (τ2). Each box-plot contains results for
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Figure 8. Estimates of split times for combinations of times and migration rates. Boxplots
of estimates of split times for each combination of simulated times and migration rates.

the migration period, and those we do see are unlikely to contain mutations. Alignment segments with
a coalescence event in the migration period and also containing mutations, will be the later coalescence
times, and τ1 will fit to these rather than the more recent but invisible ones.

Figure 9 shows estimates of M for all combinations of simulated values. As expected, we see larger
variance in estimates for shorter migration periods, with the largest uncertainty in the smallest migration
interval where few migration events are observed. For the most recent τ1 the migration rate is overesti-
mated. The explanation for this is the general correlation between estimates of τ1 and M , see Figure 10.
In this interval we overestimate τ1 as discussed above, and at the same time overestimate M .

Seeing the influence of simulated parameters on M and τ1 estimates, we also explored possible cor-
relations between M and C and M and R estimates for all combinations of τ1, τ2 and M simulated
parameters, see Figure 11 and Figure 12. We see no correlations between estimates or simulated values
here. Nor do we see correlations between estimates of R and C, Figure 13, between R and τ1, Figure 14,
between R and τ2, Figure 15, between C and τ1, Figure 16, but we see a very slight positive correlation
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Figure 10. Joint estimates of M and τ1. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of τ1 and M . The axes are equal on all plots, and when an
estimate falls outside of the span of M values show, it is shown as a blue rug.
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between C and τ2, Figure 17.
We then tried varying the coalescence rate, to match an effective population size equal to 10000,

20000 and 30000, see Figure 18. We see a slight effect on the split time estimates, and with the extra
data points from this experiment, a positive correlation between the estimates becomes apparent, see
Figure 19. We also see a slight effect in the estimation of the recombination rate, and a large effect in
the estimation of the migration rate. We do not see a correlation between the recombination rate and
migration rate estimation, though, see Figure 20. The underestimation of the migration rate we see for
larger effective population sizes can be explained by the relative rate of coalescences and migrations. For
larger effective population sizes, the coalescence rate is smaller, and we therefore see fewer migration
events causing the model to underestimate this rate, exactly like it underestimates small migration rates
for a fixed coalescence rate.

3.3 Estimation accuracy as a function of data size

We would expect the variation in estimates to depend on the data size. To explore this, we simulated data
sets of varying alignment lengths: 1, 10 and 20 Mbp, here all with the same fixed simulation parameters.
Figure 21 shows the result. The variance in estimators is clearly reduced when going from 1Mbp to
10Mbp, but less so when going from 10Mbp to 20Mbp. With the reduced variance in estimation, the bias
in estimating the recombination becomes clear, as does a slight upwards bias in estimating τ1.
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Figure 11. Joint estimates of C and M . For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of C and M . The axes are equal on all plots, and when an
estimate falls outside of the span of M values show, it is shown as a blue rug.
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Figure 12. Joint estimates of R and M . For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of R and M . The axes are equal on all plots, and when an
estimate falls outside of the span of M values show, it is shown as a blue rug.
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Figure 13. Joint estimates of R and C. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of R and C.
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Figure 14. Joint estimates of R and τ1. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of R and τ1.



18

●● ●
●

●
●● ● ●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.001 and M == 62.5

Estimated R

E
st

im
at

ed
 ττ

2

●

●

●●

●

●● ●●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.001 and M == 62.5

Estimated R

E
st

im
at

ed
 ττ

2

●
●●●●●●●

●●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.002 and M == 62.5

Estimated R

E
st

im
at

ed
 ττ

2

●●● ●
●

●●●
●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.002 and M == 62.5

Estimated R

E
st

im
at

ed
 ττ

2

●● ●●● ●● ●
●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.001 and M == 125

Estimated R

E
st

im
at

ed
 ττ

2

●
●

●

●●●●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.001 and M == 125

Estimated R

E
st

im
at

ed
 ττ

2

● ●
●● ● ●● ●●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.002 and M == 125

Estimated R

E
st

im
at

ed
 ττ

2

●
● ●●

● ●
●

●
●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.002 and M == 125

Estimated R

E
st

im
at

ed
 ττ

2

●
●● ●● ●

●
●

●
●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.001 and M == 250

Estimated R

E
st

im
at

ed
 ττ

2

●

●
●●

●●

●●●●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.001 and M == 250

Estimated R

E
st

im
at

ed
 ττ

2

●
●

● ●● ●●
●
● ●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 0.00025, ττ2 == 0.002 and M == 250

Estimated R

E
st

im
at

ed
 ττ

2

●
●

●

●

●

● ●●
●

●

0.1 0.2 0.3 0.4 0.5

0.
00

00
0.

00
10

0.
00

20
0.

00
30

ττ1 == 5e−04, ττ2 == 0.002 and M == 250

Estimated R

E
st

im
at

ed
 ττ

2

Figure 15. Joint estimates of R and τ2. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of R and τ2.
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Figure 16. Joint estimates of C and τ1. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of C and τ1.
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Figure 17. Joint estimates of C and τ2. For each combination of simulated values for τ1, τ2, and
M , the plots show the joint estimates of C and τ2.
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4 Different coalescence rates

The CTMC underlying the CoalHMM allows for different coalescence times in the different populations,
however we found in our previous isolation model that we generally were not able to infer the effective
population sizes in the extant populations [3]. For the isolation model, there are no coalescence informa-
tion about the extant populations and the only information in the data related to the extant effective
population sizes is the length of segments with the same coalescence rate that is partly determined by
these, and we found that there was not enough information in this to make inference of these parameters.

With the isolation-with-migration model, there are coalescence events in the separate populations
and thus theoretically more information about the effective population sizes there. An argument from
symmetry tells us that we cannot hope to infer these parameters in all cases. The coalescence times and
the fragment sizes more recent than the initial population split depends on the two coalescence rates, the
recombination rate, and the migration rates. The model is completely symmetric in the populations, so
flitting C1 and C2 and at the same time M12 and M21 will give exactly the same coalescence patterns.
At best, then, we can hope to make inference of the extant population coalescence rates up to symmetry.

As shown in Figure 22 we generally cannot even do this. The likelihood surface, where an example
is shown in the figure, typically shows a linearity between the two coalescence rates, so as a general rule
we will likely underestimate one parameter and overestimate another.

Figure 23 shows the result of trying to estimate three free coalescence rate parameters, and clearly
shows the linearity problem with C1 and C2 plus the difficulty we have with estimating these two pa-
rameters. The only reason that the C1 estimates are higher than C2 estimates here is that we start the
optimization with C1 lower than C2, had we reversed this the estimates would have changed as well and
we would be even worse at estimating the parameters.

Since we cannot estimate C1 and C2 accurately, we prefer to keep the number of parameters down and
estimate setting all the coalescence rates to be equal. Even when the actual parameters are simulated
to be different, this gives us tighter estimates of CA as shown in Figure 24. We do have a slightly bias
in overestimating the parameter, but this seems to be the case whether the parameters are fixed or free,
and is also observed when we have simulated the coalescence rates to be equal.
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5 Asymmetric migration

Our model allows asymmetric migration rates, and to test our estimation accuracy with this we simulated
data where we varied the split times as before but kept migration in one direction at 62.5 and the other
direction at 250.

Whether we estimate with symmetric or asymmetric migration doesn’t seem to have a major impact
on the other parameters where we get very similar results from both estimation models, see Figure 25.
Therefore, we would not expect biases in those parameters if we use a symmetric migration rate in
estimation even if the true migration pattern was asymmetric.

As for the migration parameters, if we estimate using the model with symmetric migration, the
estimated migration rate falls between the actual, asymmetric, migration rates, capturing the mean
migration rather than the directional migration, see Figure 26. Estimating with asymmetric migration
parameters, we have a higher variance on the estimates – not surprising when we increase the number of
parameters to estimate – but on average we tend to recover the parameters.

The box plot summary of estimate recover is deceptive, however, as can be seen on Figure 27. Very
few estimates are around the right M12 and M21 at the same time; most of the time one parameter is
over-estimated while the other is under-estimated. The problem is symmetry in the model very similar to
the symmetry there is in coalescence rates, and in general we do not expect to be able to recover migration
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rates when migration is asymmetric. The best we get is a mean migration rate when estimating with a
symmetric migration parameter, but fortunately estimating with a symmetric migration does not bias
the estimates of the remaining parameters.
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6 Robustness to model assumptions

The previous experiments show how the HMM approximation to the coalescent process performs for
parameter estimation, but it is important to keep in mind that also the coalescence model is a simple,
perhaps simplistic, model of the real genetic process behind the ancestry of two genomes.

In this section we explore how real data can be expected to deviate from the model assumptions and
how this will affect our estimates. While we believe that our model can be extended to explicitly model
many of the evolutionary features we describe in this section, we consider this beyond the scope of this
paper, and simply wish to explore how the violations of model assumptions can bias our estimates.

6.1 Variation in mutation rate

Our model assumes that the mutation rate is constant across the alignment, and that variation in diver-
gences is entirely determined by variation in coalescence time and stochasticity in the mutation process.
We know, however, that the mutation rate is also determined by genomic features and will vary along a
real genome alignment.

The way the mutation rate varies is likely to be a complex process, but we model it in our simulations in
a rather simple way: We split our alignment into segments, where each segment has a length geometrically
distributed (with mean 500 bp, 1000 bp, 1500 bp or 2000 bp), and then we scale the mutation rate in
each segment by a random amount.

Results are shown in Figure 28. The result of varying the mutation rate in this fashion is a reduction
in the estimated coalescence rate, corresponding to an over-estimation of the effective population size.
This is perhaps as expected, considering that the variation in mutation rate is likely to be seen as an
increase in the variation of coalescence times by the model, which it will fit by increasing the effective
population size.

When decreasing the coalescence rate, the model also decreases the split time (and to a much smaller
degree the end of gene-flow). This is because the variation in mutation rate is only seen as an increase in
the coalescence time variance and not the coalescence time mean, so the mean divergence of the species
still needs to fit the same value; the model just sees more of the divergence time as within the coalescence
process rather than divergence between the species.

Not surprisingly the recombination rate estimates also goes up, when the model sees changes in
mutation rate as changes in coalescence times, i.e. it sees more coalescence time fragments and therefore
more recombination points.

If we vary the length distribution for segments with the same mutation rate, we see a reduction of
the affect of variable mutation rate on the estimated recombination rate. When the segment lengths
are longer, the model doesn’t see them as changes in coalescence times to the same degree and the
recombination rate does not go up since the changes in divergence doesn’t change unusually much when
the mutation rate is constant for longer stretches. The coalescence rate is still under-estimated due to the
larger variance in coalescence times, though, and we see the same effects in divergence time parameters
for short and long segment sizes.

We also see the migration rate estimates go up when we vary the mutation rate, with a large effect
when we vary it in long segments. This is caused by the segments where the mutation rate is scaled
down, where a long stretch of the alignment has no or few divergent sites. These will be interpreted by
the model as very recent coalescence events that would require migration, and when we see more of such
segments, the model estimates a higher migration rate.
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Figure 28. Robustness to variations in the mutation rate across the alignment. The box
plots show the consequence of varying the mutation rate in segments along the genome for the various
parameter estimates. The parameters used for the simulations were C = 2500, M = 125, R = 0.4,
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6.2 Variation in recombination rate

The model assumes that recombination is occurring at a constant rate across the alignment. We know,
however, that recombinations primarily occur in hotspots in ape genomes. To test the behavior of the
model when recombinations occur in hotspots we simulated data with variable recombination. We picked
random 10Mbp segments of the human genome and selected recombination rates corresponding to the
recombination rates in the DeCODE recombination map and simulated according to this. A comparison
between data with a constant recombination rate and a variable recombination rate is shown in Figure 29.

The main effect we see is that the estimated recombination rate is further underestimated. This is not
surprising since the same whole-alignment recombination rate, when isolated to short segments along the
sequence, leads to a smaller rate per nucleotide pair, which is what the model estimates. This does mean,
however, that one should be careful with the interpretation of this parameter when analyzing alignments
where recombination hotspots are present.
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7 Known and unknown genotype phase

Our model assumes that we analyze a haploid genome, but generally we cannot get such genomes from
sequencing data. Instead, we will get a diploid genome with unknown phase. If the species are sufficiently
divergence, then we do not expect the phasing of genomes to matter, since both variants will then typically
be equally divergent and a random allele will suffice. On the other hand, when some variation is shared
between the species, one of the variants could be closer to the other species than the other, and in this
case using a random phase could potentially affect the estimates.

To test the effect of this, we simulated two genomes from each species in our coalescence simulations,
and for all heterzygotic sites we picked one allele at random to construct a “random” phased genome. In
Figure 30 we compare the effect of knowing the phase versus using a random phase for both the isolation
and isolation-with-migration model. Overall, we see no major effect in the estimates from not knowing
the phase, except for the most recent divergence time, τ1, in the IM model. This might be because this
is the place in the model where using a mix of variants from the two simulated genomes is most seen.

To explore how divergence impacts the effect of not knowing the true phase, we used an isolation
model and looked at different levels of species divergence, see Figure 31. As seen, for recently diverged
species not knowing the true phase leads us to underestimate the divergence time and overestimate the
coalescence rate. When the species are sufficiently diverged, and shared polymorphism is unlikely, this
effect disappears.

With an IM model, the effect of a recent end of gene flow, a low τ1, should be even less influential on
the parameter estimates than a low split time in an I model, since even with a recent end of gene flow
most coalescences will be further back in time and the amount of shared polymorphism therefore also
much smaller. Figure 32 illustrates this, where parameter estimates are shown against the percentage of
the polymorphism that is shared between two diploid genomes. Here, only the estimates of the end of
gene flow seems much affected, and only by a slight over estimates for the most recent simulated time.
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Figure 30. Effect of knowing the phase or using a random phase. The plot shows the
parameter estimates when we either know the true phase of the genomes, or when we have assigned a
random phase to all heterozygotic sites.
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Figure 32. Effect of shared polymorphism on estimates when using a random phase. The
plot shows the parameter estimates as a function of the percentage of polymorphism that is shared
between populations, when using a random phase of diploid genomes. Columns of the facets
corresponds to the simulated migration rate, M = 125 or 250, while rows corresponds to either τ1 = 250
kya or 500 kya or τ2 = 1 mya or 2 mya.
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8 Model checking

A pure isolation model is obtained by setting the migration rates to zero, and so we can immediately
compare the likelihoods of isolation versus isolation-migration models to build hypothesis tests for mi-
gration.

To get a feeling for how this would work, we simulated data with and without migration and then
performed maximum likelihood estimation using models with and without migration. Figure 33 and
Figure 34 show the maximum likelihood in each step of the numerical optimization for data simulated
under an isolation model and an isolation-with-migration model, respectively. The y-axis shows the log
likelihood in all evaluations of the model and is therefore not monotonically increasing, but the figures
give an idea about how we approach the maximum in the optimization. In general, the optimization
requires many more steps for the IM model, not surprising as there are more parameters to optimize,
but for data simulated under an isolation model, the final maximum likelihood is at roughly the same
value for the isolation model and the isolation-with-migration model, while for data simulated under an
isolation-with-migration model the isolation-with-migration model reaches a much higher final likelihood.

8.1 Likelihood ratio test

We summarize the likelihood comparisons as D = −2 ln
(

LA

L0

)
for different simulation parameters in

Figure 37. If the models were nested, we would expect this summary statistics to be χ2-distributed with
two degrees of freedom (since the alternative model, the IM-model, has two parameters more than the
null model, M and τ1). The models are not properly nested since M = 0 lies on the border of allowed
values for that parameter and as shown in Figure 35 the test statistics clearly does not follow the χ2

distribution under the null model.
We still find the likelihood ratio summary a useful statistics for comparing the IM model with the I

model. In Figure 36 is shown the D statistics plus P-values assuming the χ2 distribution. We here have
7 “significant” results for τ = 250kya and τ = 500kya and zero for the higher split times.

Using the χ2 test, out of a hundred simulations for each parameter combination, we got the number
of significant results shown in the table below.

τ1 (kya) τ2 (kya) M No. Significant

250 1000 62.5 94
250 1000 125 100
250 1000 250 100
500 1000 62.5 38
500 1000 125 57
500 1000 250 82
250 2000 62.5 98
250 2000 125 100
250 2000 250 99
500 2000 62.5 100
500 2000 125 100
500 2000 250 100

Except when looking at the shortest migration interval, we seem to generally have a very good power
for detecting migration. With the test, but have to keep in mind that we do not have a proper test with
the right error rate for a given threshold.



38

0 100 200 300 400 500 600−
14

21
95

00Lo
gL

0 200 400 600 800 1000−
14

22
36

50Lo
gL

0 100 200 300 400 500 600−
14

21
74

00Lo
gL

0 200 400 600−
14

21
91

00Lo
gL

0 100 200 300 400 500−
14

21
95

00Lo
gL

0 50 100 150 200 250 300 350

−
14

21
99

00Lo
gL

0 100 200 300 400

−
14

21
64

50

Lo
gL

0 200 400 600 800−
14

21
67

50Lo
gL

0 100 200 300 400 500

−
14

21
61

00Lo
gL

0 100 200 300 400 500−
14

22
33

50Lo
gL

Figure 33. Log likelihoods during the optimization for data simulated under a pure
isolation model. The plot shows the log-likelihood at each step in the numerical optimization. Blue
lines corresponds to maximum likelihood optimization under the isolation model, while red lines
corresponds to optimization with the IM model.
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Figure 34. Log likelihoods during the optimization for data simulated under an
isolation-with-migration model. The plot shows the log-likelihood at each step in the numerical
optimization. Blue lines corresponds to maximum likelihood optimization under the isolation model,
while red lines corresponds to optimization with the IM model.
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Figure 35. QQ-plot for the migration test under a pure isolation model. If the likelihood
ratio test was χ2 distributed, the D statistics would lie on the x = y line, which they clearly do not. For
a recent population split in a pure isolation model, the test would seem to have a higher error rate than
5% while for a more ancient split we would have a much lower error rate. The negative D values for
some of the runs are an artifact of the maximum likelihood optimization.
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Figure 36. Likelihood ratio tests for migration under a pure isolation model. Plots showing
likelihood ratio comparisons for testing migration for varying τ (the pure split time). On the left is
shown the likelihood ratio statistics D = −2 ln (LA/L0) and on the right the corresponding P-values
assuming that the D statistics is χ2 distributed with 2 degrees of freedom under the null-model. Here,
the 5% significance threshold is shown as horizontal lines.
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Figure 37. Likelihood ratio tests for migration. Plots showing likelihood ratio comparisons for
testing migration for varying τ1 (250 kya and 500 kya), τ2 (1 mya and 2 mya), and migration rate (62.5,
125, and 250). On the left is shown the likelihood ratio statistics D = −2 ln (LA/L0) and on the right
the corresponding P-values assuming that the D statistics is χ2 distributed with 2 degrees of freedom
under the null-model. Here, the 5% significance threshold is shown as horizontal lines.
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8.2 Akaike’s information criteria

Unable to do a likelihood ratio test to differentiate between isolation and isolation-with-migration models,
we tried AIC which penalizes the number of parameters used in fitting models but does not require nested
models.

For AIC, the model with the smallest score should be preferred, so we looked at the AIC for the
isolation model minus the AIC for the isolation-with-migration model. When this is positive, the IM
model is preferred while when it is negative the I model is preferred. Figure 38 shows these results for the
data presented in Figures 36 and 37. The AIC approach generally picks the right model, i.e. shows value
below zero when data was simulated under the isolation model and above zero when data was simulated
under the isolation-with-migration model.

When simulating under the isolation model, the AIC clearly prefers the isolation model stronger when
the split time is higher and is more likely to prefer the wrong model when the split time is smaller.

τ (kya) I preferred IM preferred

250 74 26
500 77 23
1000 93 7
2000 97 3

When data is simulated under the isolation-with-migration model, the AIC prefers this. The larger
the separation between τ1 and τ2 and the larger the migration rate, the stronger the model selection
signal seems to be.

τ1 (kya) τ2 (kya) M (per subst) I preferred IM preferred

250 1000 62.5 4 96
250 1000 125 0 100
250 1000 250 0 100
500 1000 62.5 51 49
500 1000 125 26 74
500 1000 250 10 90
250 2000 62.5 1 99
250 2000 125 0 100
250 2000 250 1 99
500 2000 62.5 0 100
500 2000 125 0 100
500 2000 250 0 100
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Figure 38. AIC tests for migration. The plots show AIC for the isolation model minus AIC for the
isolation-with-migration model. Values above zero means that the migration model is preferred. In (a)
values are shown for simulations under the isolation model, with varying τ , while in (b) values are
shown for the simulation model with τ1 varying between 250 kya and 500 kya (assuming µ = 10−9), τ2
varying between 1 mya and 2 mya, and M varying between 62.5, 125 and 250.
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9 Older speciation times

We performed all the simulation studies with speciation times within the last two million years, which
is the time period where we expect the speciations within the great ape genera to have occurred. While
the model is likely to fail when considering very old splits, where the variation in divergence along the
genome is insignificant compared to the divergence time between species, we do expect the model to be
applicable further back in time than the last few million years.

We performed a few simulations to validate this, simulating a split time at 6 Mya with or without
gene-flow continuing till 4 Mya. We analysed both isolation and isolation-with-migration data with both
the isolation and the isolation-with-migration model to see the parameter estimation accuracy both when
analysing with the correct and the incorrect model. Results are shown in Fig. 39.

When the analysis model matches the simulation model, the results for this deeper split are as we
would expect from the results at more recent splits: The time parameters, migration rate and coalescence
rate are reasonably well received, while the recombination rate is underestimated. When an isolation-
with-migration model is used to analyse data simulated under a clean isolation model, it estimates a small
migration rate and a short migration interval, while if an isolation model is used to analyse data simulated
under an isolation-with-migration model the main effects seem to be estimating a more recent split and
a smaller coalescence rate (consistent with seeing a larger variance, and thus Ne, in the coalescence times
in the ancestral species).

For model checking, the situation is also similar to data with a more recent split time, see Fig. 40.
When data is simulated under the isolation model, the AIC slightly prefers the isolation model (the
difference in AIC is negative), while for data simulated under the isolation-with-migration model, that
AIC difference prefers the IM model.

Since many estimates of the effective population size for older splits among the great apes see larger
effective population sizes there, we also ran simulations with a smaller C (in this case using only an
isolation model for faster computations). Results are shown in Figure 41. We do not see any noticeable
different on estimation accuracy on C or T between these combinations.
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Figure 39. Estimation accuracy for deeper speciation times. Box plots show parameter
estimates when the speciation time was simulated to be 6 Mya (with gene-flow continuing until 4 Mya
for the IM model). The “groups” (grp) on the x-axis denote the combinations of simulated versus
analysis model, so I,I indicates that the data was simulated under an isolation model and analysed
under the isolation model as well, while I,IM means that it was simulated under an isolation model but
analysed using the isolation with migration model, and so on. Simulated parameters were coalescence
rate C = 2500, recombination rate R = 0.40, split time (Tsplit) 0.006, and for the IM model the end of
gene-flow (Tmigb) 0.004 and migration rate M = 125.
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Figure 40. Model checking for deeper speciation times. Histograms of the differences in AIC for
the isolation versus the isolation-with-migration model for a split time at 6 Mya.
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Figure 41. Varying split time and coalescence rate for older splits Histograms of estimates of
C (left) and split time (right) for older split when varying the split time as 1 Mya, 2 Mya and 4 Mya
and C as 500 or 1000.
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10 Posterior decoding

From the hidden Markov model it is possible to not only estimate parameters, but also make predictions
about the coalescence time interval for each nucleotide in an alignment. We do this by computing the
posterior probability of being in any of the coalescence time intervals, for each alignment position. In
the following, to easy visualization, we show analysis with only four states in the migration interval and
four states in the ancestral population, although we do not recommend using so few states for parameter
estimation.

Figure 42 plots the mean posterior probability for each state, conditional on the true state, as box plots
based on 10 simulated datasets. If there was no information about the true state in the posterior decoding,
we would expect the box plots to be similar for all (true) states, reflecting only the prior probabilities of
the model. This is clearly not the case. However, there does not appear to be a very strong signal for
the true state in the posterior probabilities either. If this was the case, we would expect the HMM state
corresponding to the simulated coalescence time interval, to have a high posterior probability and all
other states to have a low posterior probability. While each state does have a higher posterior probability
when it matches the true state, in general neighboring states tends to have similar posteriors. For the
most recent and most ancient time intervals, there does appear some differences that means that we
might be able to distinguish those, but the middle intervals do not appear to be distinguishable from
each other.

These plots, however, do not capture the spatial patterns of coalescence times and posteriors; they
show us the mean posterior of a state over all nucleotide position in the data (with the true coalescence
time in the relevant time interval). They thus give the same weight to positions just around a recombi-
nation point that changes the coalescence time as they give to positions in the center of regions with the
same coalescence time. We would expect this to matter, however. Analyzing closely related species, as
is the intention with the model we are developing here, we expect few substitutions along the alignment
and extract information for the model from how these sites are distributed along the alignment.

Only when a segment coalesce very recently do we expect it to be both long and with few substitutions,
explaining why we are better at predicting the most recent time intervals. At the most ancient coalescence
times we find substitutions close together, something we don’t expect at more recent coalescence intervals.
These intervals are expected to be short, however, most likely the high main posterior is dominated by
a few intervals where we do have such close substitutions, while for many ancient coalescence times we
see one or zero substitutions in which case the most ancient state is unlikely to have a high posterior
probability.

For a more global view at the posterior decoding, we looked at the correlation between the true
coalescence times and inferred coalescence times from posterior decoding. Taking the mean coalescence
time in the maximum posterior interval as the predicted coalescence time, we found a correlation of 0.68
between predicted and true coalescence time. Since we cannot predict continuous coalescence times the
best possible correlation is not 1 but the correlation between true time and the mean of the interval it
falls within, which we found to be 0.94.

One way of predicting coalescence times, taking the uncertainty of the posterior decoding into account,
is to weigh the predicted coalescence times with their posterior. Let mi denote the mean coalescence time
in interval/state i and let pi denote the posterior probability of being in state i. The we can use

∑
imipi

as our prediction for the coalescence time for each alignment position. Figure 43 show the correlation
between predicted values and true values with this approach.

As the focus on this paper is on using the HMM to estimate parameters of the IM model, not analyzing
the posterior decoding of the HMM, we did not explore posterior decoding prediction further.
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Figure 42. Mean posterior probability for each HMM state for each true state. Boxplots
(based on 10 simulated datasets) of the posterior probability for each HMM state (x-axis) versus the
true coalescence interval (y-axis). Posteriors were calculated in a model where all parameters were set
to their simulated value (on the left) or estimated from the data (on the right). The HMM used here
has four states, state 1 to 4, in the gene flow interval, and four states, state 5 to 8, in the ancestral
population.
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Figure 43. Predicted versus true coalescence times. Predicted coalescence times – mean
coalescence times per interval weighted by the posterior probability of the intervals – versus true
coalescence times. To avoid over-plotting only every 100th point is plotted. The points are colored
according to their maximum posterior state. The black lines shows the x = y line while the blue line
shows the best fit of predicted versus true values.
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